cmbedded Systems

Selected Topics in Java

OOP1 (classes, inheritance), UML

Martin Deinhofer, WS2018

Die Besten. Seit 1994. www.technifum-wien.ot
|

© FH Technikum Wien

. | FH [ertam
Course Overview

= Structure of a block

Presentation

Breakout-Sessions

Breakout

Session 1. Duration: ~30-45 min.

Exercises) 2. Exercises can be done in groups of 2
3. Solution presented by 1 group at the

end of a breakout session

Presentation

1. Reference solutions can be found on
https://les.technikum-
wien.at/embedded systems public

Breakout
Session

Exercises

© FH Technikum Wien

https://es.technikum-wien.at/embedded_systems_public

TECHNIKUM
IEY

Object Oriented Programming
(OOP)

Classes

© FH Technikum Wien

L TECHNIKUM|
IEY

Object Oriented Programming

= Basic idea? - Represent the real world objects
and their interactions

— Baby
= String name
= boolean isMale
= double weight
= double decibels

© 2012/13 UAS Technikum Wien

TECHNIKUM
WIEN

Object Oriented Programming

= Why objects? Why not just primitives?

// baby alex

String nameAlex;
double weightAlex;

// baby david
String nameDavid;
double weightDavid;
// baby david2
String nameDavid2;
double weightDavid2;

= Scalability!

© 2012/13 UAS Technikum Wien

Someone would have to create a variables
for each attribute and instance:

nameAlex1...nameAlex{n}
weightAlex1...weightDavid{n}

or create arrays for each attribute

i AR
TECHNIKUM
WIEN

Object Oriented Programming

= Why objects?

© 2012/13 UAS Technikum Wien

i AR
TECHNIKUM
WIEN

Object Oriented Programming

= Why objects?

Baby1 Baby?2 Baby3 Baby4

© 2012/13 UAS Technikum Wien

ﬁ:;fer;igiﬁim
TECHNIKUM
WIEN

Object Oriented Programming

= Why objects?

‘ ‘ ‘ o

© 2012/13 UAS Technikum Wien

[FH s
TECHNIKUM
WIEN

Object Oriented Programming

= Why objects?

Hospital

© 2012/13 UAS Technikum Wien

10

TECHNIKUM
WIEN

Object Oriented Programming

= Why objects?
— model the real world including
= data structure
= attributes
= relations (associations)
— allow modelling of systems of vast complexity

— break up complex system into smaller simpler
parts

— facilitate extending of a system

— Encapsulate data or code (to protect it from
unintended use) -> blackbox

© 2012/13 UAS Technikum Wien

1"

TECHNIKUM
IEY

OOP - Definitions

= Class — a template of a data object Class Garage

= Member Varlable,_ Field — ———{ +name: String
variable representing an attribute +capacity: int

or property of the class / +addCar(): void

— _Methoq — a sequence of 1 Many instances
Instructions

Hutteldorf: Garage

= Object — an instantiation of a class, | name=Hiitteldorf

' i C ity=300
physically represented in memory apaci _{W

Capacity=150
name=,PF¥R Hutergon.

Capacity=300

© 2012/13 UAS Technikum Wien

12

TECHNIKUM
WIEN

Object Oriented Programming

= Classes/“Objects” represent data structure and code:

— Data structure of
= Primitives (int, double, char, etc..)
= QObjects (String, Integer, Double, Array, MyClass, etc...)

— Code
= Methods, Constructors,...

= C knows
— functions for code
— structs for data

© 2012/13 UAS Technikum Wien

13

. . ME
Summary of Characteristics of a

Class

= s atemplate for objects
= defines common characteristics
= defines meta information

= s the “data-type” of an object

= has fields (member variables, attributes)

= has methods (operations)

= has modifiers (private, default, protected, public)

= has abstract, final characteristics

= implements an interface

= inherits (extends) a super class

= Qverrides method implementations of a super class

© 2012/13 UAS Technikum Wien

14

[FH [ttt
TECHNIKUM
WIEN

Defining Classes

[access][abstract/final]class className
[extends superClassName]
[implements interfaceNames..]

{

//fields (member variables)

//constructors

//methods (member functions)

¥

© 2012/13 UAS Technikum Wien

15

f '.1'“:,\' BB University of
B EN Applied scien

TECHNIKUM
WIEN

Def)iing Classes

Access modifier

Class name

public class Baby {
String name;
boolean isMale;
double weight;
double decibels;

A

Member variables

Constructor
public Baby() {
this.name=,,Alex*;
} -
void wail() { Method

System.out.println("Wailing at "+
decibels + "dB");

}

© 2012/13 UAS Technikum Wien

16

TECHNIKUM
IEY

Defining Classes

= Usually a single class is declared in one file
= The public class in the file must have the same name
as the file

= Class names should use CamelCase notation:
— e.g.: BattleShip, ThislsMyVeryComplexClass

= |f a class has a main method, it can be run via the
“‘java” command

© 2012/13 UAS Technikum Wien

17

TECHNIKUM
WIEN

Methods

= Classes can not only hold data

= Classes also provide means to “send
messages” to an instance of a class - these
are called methods

= Similar to C function, but exists within class
= Has access to data within the class

© 2012/13 UAS Technikum Wien

18

TECHNIKUM
WIEN

Methods

= Methods perform functions
= Methods work on the state of the class

= Methods can have multiple arguments, and return up to one
value

= |f no value is to be returned, use the keyword void
= Aclass can have as many methods as needed

= Template:
[access] returnType methodName([arguments...]) {
//method body

© 2012/13 UAS Technikum Wien

19

L TECHNIKUM|
IEY

Creating an Instance of a Class

Baby babyl = new Baby();

= New operator tells JVM to create a new instance
= Baby/() is a call to the constructor of the class

= Variable baby1 of class “Baby” holds reference to that
new instance

= \What values do the fields hold?

© 2012/13 UAS Technikum Wien

20

L TECHNIKUM|
IEY

Creating an Instance of a Class

= Basically fields will hold their default values

byte

short

int

long oL

float 0.0f

double 0.0d

char "\u0000' (or 0)
boolean false

Reference types (objects) null

© 2012/13 UAS Technikum Wien

21

TECHNIKUM
IEY

Constructors

= Must have the same name of the class that they are in

= Multiple constructors with different parameter list may
exist for a class (overloading)

= Method that handles initialization of class
= No return type!

= Template:
[access] className([arguments...]) {
//constructor body

}

© 2012/13 UAS Technikum Wien

22

L TECHNIKUM.

Constructors

= |f no constructor is implemented a default
constructor without any parameters is
provided automatically

= |[f any class constructor is implemented, there
IS no default constructor

— |f a parameter-less constructor is then needed,
it has to be implemented

© 2012/13 UAS Technikum Wien

23

TECHNIKUM
WIEN

Where is my destructor?

= Unlike C++, Java does not need destructors

= |f an instance is no longer referenced (variable’'s scope
ends):
-> marked for destruction

= JVM will release all the instance’s data and the instance
itself in next run of garbage collector

= However there is a method finalize()
— Can be overriden to do cleanup (close file,...)

= To force garbage collection, set all references to null
Baby babyl=new Baby();
Baby baby2=baby1l;
babyl=null;
baby2=null;

© 2012/13 UAS Technikum Wien

24

ECHNIKUM

No Destructor = Garbage Collector
public class Baby {
String name;
public Baby() {
this.name=,,Alex*;
wai 5
} Holds reference to String object

void wail() {
String text="Wailing at "+ 20 + "dB",
System.out.println(text);

End of scope of variable text

-> No reference to String object any more
-> Eligible for garbage collection

© 2012/13 UAS Technikum Wien

25

L TECHNIKUM.

Non-Static versus Static Elements

= Fields usually represent data that belongs to
an instance of a class

= However there can be fields (and methods)
that should be shared across all instances of a
certain class

= use the keyword static for a field or a method
declaration

= Access via:
[ClassNamel].[fieldName|methodName]

Technikum Wien

=
o= 4
B

| vl

TECHNIKUM

Non-Static versus Static Elements

public class Bean {

public int beanCounter= 0;

public Bean() {
beanCounter++;

}

public static void main(String[] args) {
new Bean(); new Bean();
Bean bean = new Bean();
System.out.println(bean.beanCounter);
// Prints “1”

© 2012/13 UAS Technikum Wien

27

i T“’-"-&“E University
|

.

TECHNIKUM
WIEN

Non-Static versus Static Elements

public class Bean {

public static int beanCounter= 0;

public Bean() {
beanCounter++;

}

public static void main(String[] args) {
new Bean(); new Bean(); new Bean();
System.out.println(Bean.beanCounter);
// Prints “3”

© 2012/13 UAS Technikum Wien

28

TECHNIKUM
IEY

Method Overloading

= Unlike in C (but like in C++) Java classes can have
multiple methods with the same name but
a different parameter list
(distinct method signature)

= For example:
— void test() { ... }
— void test(int number) { ... }

\ J
i

method signature

= myClass.test(45); will call the second method

© 2012/13 UAS Technikum Wien

29

ECHNIKUM
WIEN

Jthis® Keyword

Non-static parts of classes can use the keyword this
= this is a reference to the current instance itself

Can be used to pass the instance to a method

Can be used to overcome variable scope collisions

public class Bean {
private int beanCounter= 0;

public Bean(int beanCounter) {

this.beanCounter =
beanCounter;

}
}

© 2012/13 UAS Technikum Wien

30

Access Types

= What is the placeholder [access]?

= There are 4 types of access keywords to
describe which classes have access:

public — any other class in any package

protected — any subclass has access

(no modifier) — only classes within the same
package, no subclasses

private — only accessible from within the

same class

= [nformation hiding (Blackbox): Hiding of
attribute and implementation details

© 2012/13 UAS Technikum Wien

[FH [t

Access Levels
Modifier |Class||Package||Subclass|World
public " ki ki A
protected||Y ki ki I
no modifier |y i I M
private |[Y M M M
Package Package
One Two
e - Subclass AlphaSub
Beta i Gamma
Visibility
Modifier ||Alpha||Beta|(Alphasub|Gamma
public ki A A ki
protected||Y A Ad Il
no modifier |y ki M M
private || M M M

31

L TECHNIKUM|
WIEN

Access Types

not visible by caller method of
public class Bean { other class

private int beanCounter= 0;

public setter method
public int setBeanCounter(int beanCounter) {

this.beanCounter = beanCounter;

*///////‘pubHcgeﬂernuﬂhod

public int getBeanCounter() {
return beanCounter;

© 2012/13 UAS Technikum Wien

32

Method Call
Call by Value vs. Call by Reference of

parameters
= Call by value - Primitives

— Called method cannot change value of caller
method

= Call by reference - Objects

— Attention: Called method can change values of object
(myCircle) instantiated in caller method

/

moveCircle(myCircle, 23, 56) public wold mowveCircle(Circle circle, int deltaX, int delta¥) {
ff code to move origin of clrcle to x+deltaXx, »wdelta¥
circle.setX{circle.getX{) + deltaX);
Values of myCirC|e after circle.setY(circle.get¥ () + delta¥);

method call?

Answer: (x+23, y+56) }

© 2012/13 UAS Technikum Wien

33

L TECHNIKUM.

Method Call

Call by Value vs. Call by Reference of
parameters

= Call by reference — Objects

= What happens if the called method instantiates a new
object?

moveCircle (myCircle, 23, 56) public wold mowveCircle(Circle circle, int deltaX, int delta¥) {
ff code to move origin of circle to xt+deltaX, w+delta¥
f 1 circle.setX(circle.getX() + deltaX);
Values of myCirC|e after circle.setY(circle.getY () + deltat);

method call?
(x+23, y+56) ?

2 /f code to assign a new reference to circle

circle = new Circle(@®, @);

(0,0) ? }

Answer: (x+23, y+56) Order Reference var. Object
1 myCircle, circle X: X+23, y: y+56
2 myCircle X: X+23, y: y+56

© 2012/13 UAS Technikum Wien

circle x:0,y:0

34

_'
Method call

Special case: Primitive wrapper classes and Strings

= String objects and the wrapper classes for primitives
(Integer, Double, ...) are immutable

= any change to them will result in a new instance with
other reference ID

= behaves like call by value

© 2012/13 UAS Technikum Wien

35

i | = BB University of

L TECHNIKUM|
WIEN

Method call

Multiple return values

= |s there a way to have multiple values returned by
method?

— Yes: Create a class that holds all return data and return an
instance

© 2012/13 UAS Technikum Wien

36

L TECHNIKUM|

. . WIEN
1. Breakout — Exercise Suggestions
(30 min.)
1. Model following classes and instantiate them
University Student
- 5tudents: Student]] + name: String
~id:int
+ register(Student): void - grades: int]) Legemt
+ deregister(Student): void — privale access neiier
+ Studentiname, id) =- proiecied access neilier
+ setGrades(int]]): void +- puhiic access ilier
+ getGrades(): int]) Balr- absiracr
+ getName(): String
+ getld(): int

Class Student, University:

— Are the member variables directly accessible by other classes in the same
package or even in other packages?
= Create a sub-package ,other‘ and test access to member variables of class Student

Hint: Use Eclipse Helpers: Source/Generate Getters and Setters

© 2012/13 UAS Technikum Wien

37

/ I =Bl University of
.m&ll >

A

. . MEN
1. Breakout — Exercise Suggestions

(cont.)
2. Answer Questions about OOP

© 2012/13 UAS Technikum Wien

38

https://docs.oracle.com/javase/tutorial/java/javaOO/QandE/creating-questions.html

TECHNIKUM
WIEN

Object Oriented Programming
Inheritance

© FH Technikum Wien

[FH [ttt
TECHNIKUM
WIEN

Inheritance

public class Dude {
protected String name;
Dude(String name) {
this.name=name;
}
public void sayName() {
System.out.println(name);

© 2012/13 UAS Technikum Wien

40

[FH [wrhan
TECHNIKUM
WIEN

Inheritance

= What about special characters?
= Let's add a wizard ...

= But how?

© 2012/13 UAS Technikum Wien

41

TECHNIKUM
WIEN

Inheritance

= What about special characters?

= Let's add a wizard...
public class Wizard extends Dude

{ Wizard(Stri) Call constructor of super-class
tear ring name) { In case of empty constructor
super(name); :
can be skipped

}

}
= Wizard can do and receive the same as Dude (apart from
accessing its private fields) :
Dude frodo=new Dude(,,frodo*);
Wizard gandalf = new Wizard(,,gandalf®);
frodo.sayName();
gandalf.sayName();

© 2012/13 UAS Technikum Wien
42

[FH [epham
TECHNIKUM
WIEN

Inheritance

= But can‘t wizards do more?

public class Wizard extends Dude

{
public void cast(Spell spell)
{
System.out.println(spell);
}
}

gandalf.cast(someSpell);
frodo.cast(someSpell); //won't compile

© 2012/13 UAS Technikum Wien

43

[FH [epham
TECHNIKUM
WIEN

Inheritance

= What about method overriding?

public class Wizard extends Dude

{
public void sayName() {

System.out.println("Wizard " + name);

gandalf.sayName(); // "Wizard Gandalf"
((Dude) gandalf).sayName(); // "Gandalf"

© 2012/13 UAS Technikum Wien

44

L TECHNIKUM|
IEY

Inheritance

= How does overriding work"?
— The JVM first looks up methods in the runtime class

— If method is not implemented in class, JVM walks up the
parent classes until method is found

— If instance is cast to a parent class, method search starts at
parent

= But:
Dude gandalf = new Wizard();
gandalf.sayName(); // "Wizard Gandalf"
= The reference variable (gandalf) can be of parent type

= very useful for abstraction and hiding implementation
details!!

© 2012/13 UAS Technikum Wien

45

TECHNIKUM
WIEN

Invisible superclass Object

= |n Java, each class directly or indirectly inherits from class
Object
= Object is a common superclass for each class and defines
some methods
— equals(Object): Object: Compare objects for equality
(See block collections)
— hashCode(): 1int: Return unique hashCode for object
(See block collections)

— toString() String: Returns a String object containing
the values of the objects’ member variables. The method
must be overridden for custom classes.

© FH Technikum Wien 46

TECHNIKUM
WIEN

Inheritance — Summary

= Allows classes to inherit functionality from other
classes

= Allows data and procedural abstraction
= Decreases complexity of large software systems

= Reduces redundancy — reuse of common member
variables and methods

= Unlike C++, Java does not support multiple
inheritance, classes can only have one parent

= but there are Interfaces

© 2012/13 UAS Technikum Wien

47

L TECHNIKUM.

UML

= The Unified Modeling Language™ (UML®) is a standard
visual modeling language intended to be used for
— modeling business and similar processes,
— analysis, design, and implementation of software-based
systems

UML is a common language for business analysts, software
architects and developers used to describe, specify, design,
and document existing or new business processes, structure
and behavior of artifacts of software systems.

= Managed by Object Management Group (OMG)
Current Standard: UML v2.5, June 2015

© FH Technikum Wien 48

[FH b
TECHNIKUM
WIEN

UML — Overview of Diagrams

‘ UML 2.5 Diagram

AN

Structure Diagram | Behavior Diagram
il A
Class Diagram k=1 ; UseCase Diagram
Object Diagram Inforn:natmn Flow
Diagram
Package Diagram — Activity Diagram
Model Diagram Sm“_’ Machine
Diagram
Composite Structure | Behavioral State
Diagram Machine Diagram
Internal Structure Pratocol State
Diagram Machine Diagram
Collaboration Use

E— Interaction Diagram |

Diagram
il
Component Diagram }— Seq ce Diagram
Manifestation Diagram Camr.nunicatlcm
| Diagram
Deployment Diagram —— Timing Diagram
Network Architecture T Interaction Overview
Diagram Diagram
© FH Technikum Wien Profile Diagram —— © uml-diagrams.org 49

ey e
TECHNIKUM
WIEN

UML — References

= Interesting Links
— UML basics
— UML Notations Cheatsheet

Class Diagrams

© FH Technikum Wien 50

http://www.uml-diagrams.org/
https://cis.technikum-wien.at/documents/mes/1/sec/download/Java for Embedded Systems/Block_2/uml-2-Notationsuebersicht-oose.de.pdf
http://www.uml-diagrams.org/class-diagrams-overview.html

L TECHNIKUM|
IEY

2. Breakout — Exercise Suggestions

Model following classes and
Instantiate them

Method getName is inherited

Override method toString of
class Object

Create a Course and a Webinar
instance and print out the object
content to the console with the
toString() method

Print out contents of getName ()
and getId()

—————————————————————————————

-4 1Class Object must notbe
icreated directly it is the internal _'

1 iroot superclass of all classes in!
i 'Java and provides methods like

EtnString[}: String

Extend=
I
Course Legemt
— mivale access modiher
- name: String ~: protected access maolifer
—id-int + public aCCess miadier
nabic: ahsiract
+ Course(name: String, id: int}
+ gethame(): String
+ getld(}: int
+toString(); String ==overridden==
Extends Extends
LabCourse Webinar

+ LabCourse(name,id, exercises)
+ getExcercises() String(]
+toString(): String ==overridden==

+Webinariname, id, LIRL)
+ getWebinarJRL(): LRL
+toString(); String ==overridden==

Hint: Use Eclipse Helpers: Source/Override/Implement Methods

© 2012/13 UAS Technikum Wien

51

