
Selected Topics in Java

OOP1 (classes, inheritance), UML

Martin Deinhofer, WS2018

© FH Technikum Wien 1

Course Overview

▪ Structure of a block

2

© FH Technikum Wien

Presentation

Breakout
Session

Exercises

Presentation

Breakout
Session

Exercises

Breakout-Sessions

1. Duration: ~30-45 min.

2. Exercises can be done in groups of 2

3. Solution presented by 1 group at the

end of a breakout session

1. Reference solutions can be found on

https://es.technikum-

wien.at/embedded_systems_public

https://es.technikum-wien.at/embedded_systems_public

Object Oriented Programming

(OOP)

Classes

© FH Technikum Wien

3

Object Oriented Programming

▪ Basic idea? - Represent the real world objects

and their interactions

– Baby

▪ String name

▪ boolean isMale

▪ double weight

▪ double decibels

5

© 2012/13 UAS Technikum Wien

Object Oriented Programming

▪ Why objects? Why not just primitives?
// baby alex

String nameAlex;

double weightAlex;

// baby david

String nameDavid;

double weightDavid;

// baby david2

String nameDavid2;

double weightDavid2;

▪ Scalability!

6

© 2012/13 UAS Technikum Wien

Someone would have to create a variables

for each attribute and instance:

nameAlex1…nameAlex{n}

weightAlex1…weightDavid{n}

or create arrays for each attribute

Object Oriented Programming

▪ Why objects?

7

© 2012/13 UAS Technikum Wien

Name=„Alex“

Sex=„m“

Weight=3500

…

Baby1

Object Oriented Programming

▪ Why objects?

8

© 2012/13 UAS Technikum Wien

Name=„Alex“

Sex=„m“

Weight=3500

…

Baby1

Name=„Dave“

Sex=„m“

Weight=3600

…

Baby2

Name=„Sarah“

Sex=„w“

Weight=2800

…

Baby3

Name=„Matt“

Sex=„m“

Weight=3900

…

Baby4

Object Oriented Programming

▪ Why objects?

9

© 2012/13 UAS Technikum Wien

Baby1 Baby2 Baby3 Baby4

Nurse1 Nurse2 Nurse3

Nursery

Object Oriented Programming

▪ Why objects?

10

© 2012/13 UAS Technikum Wien

Baby

Nurse

Nursery

[]

[]

Emergency

Room

Hospital

Object Oriented Programming

▪ Why objects?

– model the real world including

▪ data structure

▪ attributes

▪ relations (associations)

– allow modelling of systems of vast complexity

– break up complex system into smaller simpler

parts

– facilitate extending of a system

– Encapsulate data or code (to protect it from

unintended use) -> blackbox

11

© 2012/13 UAS Technikum Wien

OOP - Definitions

▪ Class – a template of a data object

– Member Variable, Field –

variable representing an attribute

or property of the class

– Method – a sequence of

instructions

▪ Object – an instantiation of a class,

physically represented in memory

12

© 2012/13 UAS Technikum Wien

Class Garage

+name: String

+capacity: int

+addCar(): void

P+R Hütteldorf:

Garage

name=„P+R Hütteldorf“

Capacity=300

Stefansplatz: Garage

name=„Stefansplatz“

Capacity=150

Hütteldorf: Garage

name=„Hütteldorf“

Capacity=300

Many instances

Object Oriented Programming

▪ Classes/“Objects“ represent data structure and code:

– Data structure of

▪ Primitives (int, double, char, etc..)

▪ Objects (String, Integer, Double, Array, MyClass, etc…)

– Code

▪ Methods, Constructors,…

▪ C knows

– functions for code

– structs for data

13

© 2012/13 UAS Technikum Wien

Summary of Characteristics of a

Class

▪ is a template for objects

▪ defines common characteristics

▪ defines meta information

▪ is the “data-type” of an object

▪ has fields (member variables, attributes)

▪ has methods (operations)

▪ has modifiers (private, default, protected, public)

▪ has abstract, final characteristics

▪ implements an interface

▪ inherits (extends) a super class

▪ Overrides method implementations of a super class

▪ …

14

© 2012/13 UAS Technikum Wien

Defining Classes

[access][abstract/final]class className

[extends superClassName]

[implements interfaceNames…]

{

//fields (member variables)

//constructors

//methods (member functions)

}

15

© 2012/13 UAS Technikum Wien

Defining Classes

public class Baby {

String name;

boolean isMale;

double weight;

double decibels;

public Baby() {

this.name=„Alex“;

…

}

void wail() {

System.out.println("Wailing at "+

decibels + "dB");

}

}

16

© 2012/13 UAS Technikum Wien

Member variables

Method

Class name
Access modifier

Constructor

Defining Classes

▪ Usually a single class is declared in one file

▪ The public class in the file must have the same name

as the file

▪ Class names should use CamelCase notation:

– e.g.: BattleShip, ThisIsMyVeryComplexClass

▪ If a class has a main method, it can be run via the

“java” command

17

© 2012/13 UAS Technikum Wien

Methods

▪ Classes can not only hold data

▪ Classes also provide means to “send

messages” to an instance of a class - these

are called methods

▪ Similar to C function, but exists within class

▪ Has access to data within the class

18

© 2012/13 UAS Technikum Wien

Methods

▪ Methods perform functions

▪ Methods work on the state of the class

▪ Methods can have multiple arguments, and return up to one

value

▪ If no value is to be returned, use the keyword void

▪ A class can have as many methods as needed

▪ Template:

[access] returnType methodName([arguments…]) {

//method body

}

19

© 2012/13 UAS Technikum Wien

Creating an Instance of a Class

Baby baby1 = new Baby();

▪ New operator tells JVM to create a new instance

▪ Baby() is a call to the constructor of the class

▪ Variable baby1 of class “Baby” holds reference to that

new instance

▪ What values do the fields hold?

20

© 2012/13 UAS Technikum Wien

Creating an Instance of a Class

▪ Basically fields will hold their default values

21

© 2012/13 UAS Technikum Wien

Data Type Default Value

byte 0

short 0

int 0

long 0L

float 0.0f

double 0.0d

char '\u0000' (or 0)

boolean false

Reference types (objects) null

Constructors

▪ Must have the same name of the class that they are in

▪ Multiple constructors with different parameter list may

exist for a class (overloading)

▪ Method that handles initialization of class

▪ No return type!

▪ Template:

[access] className([arguments…]) {

//constructor body

}

22

© 2012/13 UAS Technikum Wien

Constructors

▪ If no constructor is implemented a default

constructor without any parameters is

provided automatically

▪ If any class constructor is implemented, there

is no default constructor

– If a parameter-less constructor is then needed,

it has to be implemented

23

© 2012/13 UAS Technikum Wien

Where is my destructor?

▪ Unlike C++, Java does not need destructors

▪ If an instance is no longer referenced (variable’s scope
ends):
-> marked for destruction

▪ JVM will release all the instance’s data and the instance
itself in next run of garbage collector

▪ However there is a method finalize()

– Can be overriden to do cleanup (close file,…)

▪ To force garbage collection, set all references to null
Baby baby1=new Baby();
Baby baby2=baby1;
baby1=null;
baby2=null;

24

© 2012/13 UAS Technikum Wien

No Destructor → Garbage Collector

public class Baby {

String name;

public Baby() {

this.name=„Alex“;

wail();

}

void wail() {

String text="Wailing at "+ 20 + "dB";

System.out.println(text);

}

}

25

© 2012/13 UAS Technikum Wien

Holds reference to String object

End of scope of variable text

-> No reference to String object any more

-> Eligible for garbage collection

Non-Static versus Static Elements

▪ Fields usually represent data that belongs to

an instance of a class

▪ However there can be fields (and methods)

that should be shared across all instances of a

certain class

▪ use the keyword static for a field or a method

declaration

▪ Access via:

[ClassName].[fieldName|methodName]

26

© 2012/13 UAS Technikum Wien

Non-Static versus Static Elements

public class Bean {

public int beanCounter= 0;

public Bean() {

beanCounter++;

}

public static void main(String[] args) {

new Bean(); new Bean();

Bean bean = new Bean();

System.out.println(bean.beanCounter);

// Prints “1”

}

}

27

© 2012/13 UAS Technikum Wien

Non-Static versus Static Elements

public class Bean {

public static int beanCounter= 0;

public Bean() {

beanCounter++;

}

public static void main(String[] args) {

new Bean(); new Bean(); new Bean();

System.out.println(Bean.beanCounter);

// Prints “3”

}

}

28

© 2012/13 UAS Technikum Wien

Method Overloading

▪ Unlike in C (but like in C++) Java classes can have

multiple methods with the same name but

a different parameter list

(distinct method signature)

▪ For example:

– void test() { … }

– void test(int number) { … }

▪ myClass.test(45); will call the second method

29

© 2012/13 UAS Technikum Wien

method signature

„this“ Keyword

▪ Non-static parts of classes can use the keyword this

▪ this is a reference to the current instance itself

▪ Can be used to pass the instance to a method

▪ Can be used to overcome variable scope collisions

public class Bean {

private int beanCounter= 0;

public Bean(int beanCounter) {

this.beanCounter =
beanCounter;

}

}

30

© 2012/13 UAS Technikum Wien

Access Types

▪ What is the placeholder [access]?

▪ There are 4 types of access keywords to

describe which classes have access:

– public – any other class in any package

– protected – any subclass has access

– (no modifier) – only classes within the same

package, no subclasses

– private – only accessible from within the

same class

▪ Information hiding (Blackbox): Hiding of

attribute and implementation details

31

© 2012/13 UAS Technikum Wien

Access Types

public class Bean {

private int beanCounter= 0;

public int setBeanCounter(int beanCounter) {

this.beanCounter = beanCounter;

}

public int getBeanCounter() {

return beanCounter;

}

}

32

© 2012/13 UAS Technikum Wien

not visible by caller method of

other class

public setter method

public getter method

Method Call
Call by Value vs. Call by Reference of

parameters

▪ Call by value - Primitives

– Called method cannot change value of caller

method

▪ Call by reference - Objects

– Attention: Called method can change values of object

(myCircle) instantiated in caller method

33

© 2012/13 UAS Technikum Wien

Values of myCircle after

method call?

Answer: (x+23, y+56)

Method Call
Call by Value vs. Call by Reference of

parameters

▪ Call by reference – Objects

▪ What happens if the called method instantiates a new

object?

34

© 2012/13 UAS Technikum Wien

Values of myCircle after

method call?

(x+23, y+56) ?

(0,0) ?

Answer: (x+23, y+56)
Order Reference var. Object

1 myCircle, circle x: x+23, y: y+56

2 myCircle x: x+23, y: y+56

circle x: 0, y: 0

1

2

Method call
Special case: Primitive wrapper classes and Strings

▪ String objects and the wrapper classes for primitives

(Integer, Double, …) are immutable

▪ any change to them will result in a new instance with

other reference ID

▪ behaves like call by value

35

© 2012/13 UAS Technikum Wien

Method call
Multiple return values

▪ Is there a way to have multiple values returned by

method?

– Yes: Create a class that holds all return data and return an

instance

36

© 2012/13 UAS Technikum Wien

1. Breakout – Exercise Suggestions

(30 min.)

1. Model following classes and instantiate them

2.
Class Student, University:

– Are the member variables directly accessible by other classes in the same

package or even in other packages?

▪ Create a sub-package ‚other‘ and test access to member variables of class Student

Hint: Use Eclipse Helpers: Source/Generate Getters and Setters

37

© 2012/13 UAS Technikum Wien

1. Breakout – Exercise Suggestions

(cont.)

2. Answer Questions about OOP

38

© 2012/13 UAS Technikum Wien

https://docs.oracle.com/javase/tutorial/java/javaOO/QandE/creating-questions.html

Object Oriented Programming

Inheritance

© FH Technikum Wien

39

Inheritance

public class Dude {

protected String name;

Dude(String name) {

this.name=name;

}

public void sayName() {

System.out.println(name);

}

}

40

© 2012/13 UAS Technikum Wien

Inheritance

▪ What about special characters?

▪ Let‘s add a wizard …

▪ But how?

41

© 2012/13 UAS Technikum Wien

Inheritance

▪ What about special characters?

▪ Let‘s add a wizard…
public class Wizard extends Dude

{

Wizard(String name) {

super(name);

}

}

▪ Wizard can do and receive the same as Dude (apart from
accessing its private fields) :

Dude frodo=new Dude(„frodo“);

Wizard gandalf = new Wizard(„gandalf“);

frodo.sayName();

gandalf.sayName();

42

© 2012/13 UAS Technikum Wien

Call constructor of super-class

In case of empty constructor

can be skipped

Inheritance

▪ But can‘t wizards do more?

public class Wizard extends Dude

{

public void cast(Spell spell)

{

System.out.println(spell);

}

}

gandalf.cast(someSpell);

frodo.cast(someSpell); //won't compile

43

© 2012/13 UAS Technikum Wien

Inheritance

▪ What about method overriding?

public class Wizard extends Dude

{

public void sayName() {

System.out.println("Wizard " + name);

}

}

gandalf.sayName(); // "Wizard Gandalf"

((Dude) gandalf).sayName(); // "Gandalf"

44

© 2012/13 UAS Technikum Wien

Inheritance

▪ How does overriding work?

– The JVM first looks up methods in the runtime class

– If method is not implemented in class, JVM walks up the

parent classes until method is found

– If instance is cast to a parent class, method search starts at

parent

▪ But:

Dude gandalf = new Wizard();

gandalf.sayName(); // "Wizard Gandalf"

▪ The reference variable (gandalf) can be of parent type

▪ very useful for abstraction and hiding implementation

details!!

45

© 2012/13 UAS Technikum Wien

Invisible superclass Object

▪ In Java, each class directly or indirectly inherits from class

Object

▪ Object is a common superclass for each class and defines

some methods

– equals(Object): Object: Compare objects for equality

(See block collections)

– hashCode(): int: Return unique hashCode for object

(See block collections)

– toString() String: Returns a String object containing

the values of the objects’ member variables. The method

must be overridden for custom classes.

46© FH Technikum Wien

Inheritance – Summary

▪ Allows classes to inherit functionality from other

classes

▪ Allows data and procedural abstraction

▪ Decreases complexity of large software systems

▪ Reduces redundancy – reuse of common member

variables and methods

▪ Unlike C++, Java does not support multiple

inheritance, classes can only have one parent

▪ but there are Interfaces

47

© 2012/13 UAS Technikum Wien

UML

▪ The Unified Modeling Language™ (UML®) is a standard

visual modeling language intended to be used for

– modeling business and similar processes,

– analysis, design, and implementation of software-based

systems

UML is a common language for business analysts, software

architects and developers used to describe, specify, design,

and document existing or new business processes, structure

and behavior of artifacts of software systems.

▪ Managed by Object Management Group (OMG)

Current Standard: UML v2.5, June 2015

48© FH Technikum Wien

UML – Overview of Diagrams

49© FH Technikum Wien

UML – References

▪ Interesting Links

– UML basics

– UML Notations Cheatsheet

Class Diagrams

50© FH Technikum Wien

http://www.uml-diagrams.org/
https://cis.technikum-wien.at/documents/mes/1/sec/download/Java for Embedded Systems/Block_2/uml-2-Notationsuebersicht-oose.de.pdf
http://www.uml-diagrams.org/class-diagrams-overview.html

2. Breakout – Exercise Suggestions

1. Model following classes and

instantiate them

– Method getName is inherited

– Override method toString of

class Object

– Create a Course and a Webinar
instance and print out the object

content to the console with the

toString() method

– Print out contents of getName()
and getId()

51

© 2012/13 UAS Technikum Wien

Hint: Use Eclipse Helpers: Source/Override/Implement Methods

